

SRI VENKATESWARA INTERNSHIP

PROGRAM FOR RESEARCH IN ACADEMICS

(SRI-VIPRA)

Project Report of 2022: SVP-2231

“Machine Learning Methods and its Applications”

IQAC

Sri Venkateswara College

University of Delhi

Dhaula Kuan

New Delhi - 110021

Name of the Mentor:

Mr. Anirban Chatterjee

Name of Department:

Mathematics

Designation:

Assistant Professor

SRI VIPRA PROJECT 2022

Title: Machine Learning Methods and its Applications

List of students under SRI VIPRA Project-

S.No. Name of student Course Photo

1. Uditi Bajaj

(Roll no. 1720124)

B.Sc.(H) Mathematics

(Sem-5)

2. Rishika Panwar

(Roll No. 1720085)

B.Sc.(H) Mathematics

(Sem-5)

3. Abhya Ahuja

(Roll No. 1720022)

B.Sc.(H) Mathematics

(Sem-5)

4. Hitaishi

(Roll No. 1720126)

B.Sc.(H) Mathematics

(Sem-5)

5. Pranavi K

(Roll No. 1720075)

B.Sc.(H) Mathematics

(Sem-5)

6. Harsh Yadav

(Roll no. 1920018)

B.Sc. (H) Statistics

(Sem 5)

7. Shubham Snehil

(Roll No. 1920052)

B.Sc.(H) Statistics (Sem-

5)

8. Aryaman Bawa

(Roll No. 0520036)

B.A.(H) Economics

(Sem-5)

Signature of Mentor

Certificate

This is to certify that the aforementioned students from Sri Venkateswara

College have participated in the summer project SVP-2231 titled “Machine

Learning Methods and its Applications”. The participants carried out research

project work under my guidance and supervision from July 1, 2022, to

September 20, 2022. The teaching and work carried out were held in a mixed

format, both online and offline.

(Signature of Mentor)

Mr. Anirban Chatterjee

Assistant Professor

Department of Mathematics

Sri Venkateswara College

University of Delhi

Acknowledgement

We would like to extend our heartfelt gratitude to respected Mr. Anirban

Chatterjee for showing his faith in us and believing that we were capable

enough to be a part of SRI-VIPRA. Machine Learning and Data Science have

always been something that fascinated us and getting this opportunity to

study some of its concepts and how they can be applied to an industrial-level

problem has piqued our curiosity to continue learning and researching more

on these topics. During this period, sir taught us the basics of statistical

concepts and then gradually advanced to a higher level of analysis while

providing a deeper understanding of each concept. We are extremely thankful

to him for guiding us in every way possible.

Also, we would like to thank the authorities of Sri Venkateswara College to

have conducted this internship program as it gave us a lot of exposure.

CONTENTS

S.No. Topic Page No.

1. Abstract 7

2. Descriptive Statistics 8

3. Linear Regression with Gradient

Descent

10

4. EDA Task 14

 5. Logistic Regression 18

6. Underfitting and Overfitting 20

7. Performance Metrics 22

8. Support Vector Machines 25

9. Naive Bayes 27

10. KNN 35

11. References 48

Abstract

This project is everything about exploring the most demanding topic of

today's technological nature, i.e., machine learning and its types. We are here

mainly focusing on the major types of machine learning and their

applications. Along with its myriad applications, we will come across the

various machine learning systems and deeply analyze the mathematical and

statistical models like overfitting & underfitting, linear regression, logical

regression, and many more. It also examines the gradient descent algorithm

that is most important in minimizing the cost function to get the best model

with high efficiency. Apart from these, this project also focuses on SVM,

KNN, and Naive Bayes Classifier in detail and deeply its functions

incorporating the required mathematical and statistical models.

The aim of this project is first to deep dive into the theoretical aspects of

descriptive statistics, overfitting & underfitting, gradient descent, linear

regression, logistic regression, performance metrics, support vector machine

(SVM), k-nearest neighbor (KNN), and Naive Bayes classifier and then

incorporate them into its application. Our primary focus is to do exploratory

data analysis (EDA) and predict results by building mathematical and

statistical models. We have done EDA on the basketball and healthcare data

sets. We use the kernel function in SVM to manipulate data. And, the Naive

Bayes Classifier to predict whether or not the patient has diabetes. And also

uses, the KNN Classifier on a medical data set and makes the statistical

model predict the condition of the patient depending on the received test

results. We utilize the Jupyter Notebook to document our python code that

aims at creating such models. We also hope to achieve a sufficient level of

accuracy for our model to work correctly.

Towards the end of this project, we also observe the drawbacks of our model

and move on to further discuss the bright future that data science and

artificial intelligence hold while also spreading their applications to a wide

variety of fields, including healthcare, sports, etc.

Descriptive Statistics

A measure of central tendency is a single value that tries to represent a dataset by identifying the

central position within that set of data. Measures of central tendency are also called measures of

central location. The mean (often called the average) is the most popular measure of central

tendency. Other central tendencies are the median and mode.

The mean, median and mode are all valid measures of central tendency. Some situations make

one more appropriate than the others. In this summary, we will describe these measures and

advise when they should be invoked.

Mean

The mean is equal to the sum of all the values in the data divided by the cardinality of the

dataset. So, if we have n values in a data set and they have values , the sample
mean x is

 ̅

This can be written more concisely with the summation notation,

 ̅
 ∑

As this mean is derived from a dataset of n points, we refer to it as the sample mean. The mean

of the entire population is denoted by μ.

Important features of the mean:

 It minimizes error in the prediction of any one value in your data set.

 Its calculation involves every point in the dataset.

 It the only measure of central tendency where the sum of deviations of each value

from the mean is always zero.

 It is generally used when the data is continuous

Drawback(s):

Means are susceptible to outliers which might cause some misrepresentation of the data. For

example: If we measure the heights of 5 people and their heights (in meters) are 1.67, 1.62, 1.65,

1.64, 6. The average height here would be 2.52, which is not a good representation of the general

trend in heights even within this small sample. Also, what‟s disconcerting is that we may have

giants walking among us.

Median

The median denotes the value lying at the midpoint of a frequency distribution of observed

values or quantities, so that there is an equal probability of a data point being greater than or less

than it. It is also commonly referred to as the 50th percentile. To find the median of the

distribution it must first be sorted, and then the value in the „middle‟ (in case of odd number of

points) or the average of the two terms in the „middle‟ (in case of even number of points) is

selected as the median of the distribution.

Mode

The mode is the most commonly recurring value in the dataset. It is generally considered when

dealing with categorical variables, where the most common category must be ascertained.

Skewed Distributions

Often, we check if the data is distributed normally as many statistical tests require this

underlying assumption. When the data is normally distributed, the usual measure for central

tendency that is considered is the mean even though in a normal distribution the mean and

median are the same. This is done because the mean is more representative of the data since all

the data points are used in its calculation.

However, if the data is skewed in either direction, the mean is pulled towards the direction in

which the data is skewed. In these situations, the median is usually considered as the measure for

central tendency. The greater the skewness, the greater is the distance between the mean and the

median.

Linear Regression

In statistics, we use regression to model a target (dependent) variable based on some explanatory

(independent) variables. We use this technique to establish a cause-and-effect relationship

between variables.

Simple Linear Regression involves one independent variable and a linear relationship between

the independent and dependent variables.

The equation used for the same is:

where

In simple linear regression, we aim to find the best value for and .

In order to achieve this, we find the line of best fit. Any line would be termed as best if the error

between the predicted values of y and actual values of y is the minimum.

This now becomes a minimization problem with the error function as

∑ ̂

Where, ̂= predicted value and = actual value

The function J is called the cost function or mean squared error (MSE) function.

Here, we square the error term because of these few reasons:

1. When we consider ̂), some error values might get eliminated because of opposite

signs and the overall error be reduced but that wouldn‟t indicate a good line of fit.

2. One might go ahead with | ̂ | this function in order to make sure that error terms

don‟t result in nullification but here, this function might not be differentiable everywhere.

So, we square the term since graphs of even functions are easier to derive.

3. Also, | ̂ | is more robust to outliers when compared with the squared term.

We also follow some assumptions for SLR:

1. is independent of the error term

2. The variance of residuals is same for all values of x

3. The mean value of residuals is zero

Assumption 2 and 3 suggests that the error term is normally distributed. Here is an explanation

of why the mean should be zero.

Let linear regression model be yi = β1 + β2 X2i + β3 X3i +…+ βk Xi + ui (a data point in K

dimensions)

Assume E (Ui |X2i, X3i, …, Xki) =W (W is a constant, in standard model W=0)

Conditional expectations of the equation for yi can be expressed as

a. E (yi |X2i, X3i, …, Xki) = β1 + β2 X2i + β3 X3i +…+ βk Xi + W

b. => (β1+W) + β2 X2i + β3 X3i+…+ βk Xi

c. => α + β2 X2i + β3 X3i+…+ βk Xi where α=(β1+W)

Given the training data, the Xs are treated as constant while the βS are the variables

If the assumption 3 is not fulfilled, we cannot solve the equation for β1 !

Now, the question arises how do we minimize the square function?

For this, we use gradient descent algorithm

Gradient Descent:

Gradient Descent is an optimization algorithm. An optimization algorithm helps us to minimize

(or maximize) an objective function (Error function) E(x) such as Sum of Squared Errors

(SSE) which is basically a mathematical function dependent on the model's learnable parameters

which are used in computing the target

value(Y) from the set of predictors(X) used in the model. The optimizer algorithms try to

estimate the values of wi and b in the cost function, C= ½ ((wi. xi + b) – y) which when used,

will give minimum or maximum C. In ML we look for minimum value instead of the maximum

value.

Gradient in Gradient descent refers to a vector that is tangent of a function and points in the

direction of greatest increase of this function. Gradient is zero at a local maximum or minimum

because there is no single direction of increase. In mathematics, gradient is defined as a partial

derivative for every input variable of a function.

Here, we use the concept of Negative gradient which is a vector pointing at the greatest decrease

of a function. Therefore, we can minimize a function by iteratively moving a little bit in the

direction of negative gradient.

One must wonder why we use gradient descent instead of manually differentiating the cost

function?

This is because, in problems wherein there are more than two weights/slopes that need to be

adjusted, it is not manually possible to find the right combination of weights using brute force.

Graphical representation of Gradient Descent:

1. A random combination of bias B1 and input weights W1

(more than one is not possible to visualize)

2. Each combination of W1 and B1 is one particular linear model in a neuron. That model is

associated with proportionate error e1 (red dashed line).

3. Objective is to drive e1 towards 0. For which we need to find the optimal weight (Woptimal)

and bias (Boptimal)

4. The algorithm uses gradient descent algorithm to

change bias and weight from starting values of B1 and

W1 towards the Boptimal, Woptimal.

This movement from starting weight and bias to

optimal weight and bias may not happen in one shot. It

is likely to happen in multiple iterations. The step size

can be influenced using a parameter called Learning

Rate. It decides the size of the steps i.e., the amount by

which the parameters are updated.

Too small a learning step will slow down the entire

process while too large may lead to an infinite loop.

5. Every ring on the error function represents a combination of

coefficients (m1 and m2 in the image) which result in same

quantum of error i.e., SSE

6. Let us convert that to a 2d contour plot. In the contour plot,

every ring represents one quantum of error.

7. The innermost ring / bull‟s eye is the combination of the

coefficients that gives the least SSE

If we look closely at the contour plot, we would find out the following points:

1. Outermost circle is highest error while innermost is the least error circle

2. A circle represents a combination of parameters which result in the same error. Moving on a

circle will not reduce error.

3. Objective is to start from anywhere but reach the innermost circle.

Steps to evaluate Gradient Descent:

1. First evaluate dy(error)/d(weight) to find the direction of highest increase in error given a unit

change in weight (Blue arrow). Partial derivative w.r.t. to weight

2. Next find dy(error) /d(bias) to find the direction of highest increase in error given a unit

change in bias (green arrow). Partial derivative w.r.t. to bias

3. Partial derivatives give the gradient in the given axis and gradient is a vector

4. Add the two vectors to get the direction of gradient (black arrow) i.e., direction of max

increase in error

5. We want to decrease error, so find the negative of the gradient i.e., opposite to black arrow

(Orange arrow). The arrow tip is a new value of bias and weight.

6. Recalculate the error at this combination an iterate to step 1 till movement in any direction

only increases the error

Test statistic: R^2

It is called the coefficient of determination and explains variation in y around its mean. One can

think of it as a measure of variability between dependent and independent variables (how much

variance can the model explain about the dependent variable). A high value suggests that there is

less difference between predicted and actual values.

We use this formula to calculate R^2:

Exploratory Data Analysis on Basketball Teams Dataset

Basketball EDA task

The given dataset about different basketball teams had 12 columns including Team Tournament,

Score, PlayedGame, WonGames, DrawnGames, LostGames, BasketScored, BasketGiven,

TournamentChampion, Runner-up, TeamLaunch, HighestPositionHeld.

There were 61 entries in the dataset and there were no null entries in the dataset.

We started with analyzing the number of games won and saw that the data is right skewed with

most of the teams winning 0-200 matches and few winning more than 250 matches.

We used seaborn library to visualize the next part of the dataset. To find the top 20 teams with

highest score and the greatest number of matches won, we used the following code snippet:

We then used a heatmap to find correlations among the various variables and found that there is

a very strong correlation between games won, baskets scored, and score

We also added a new column called the winning probability and losing probability along with

winning percentage by using the following code:

x=0

df['prob'] =0

for x in range (61):

 df['prob']. iloc[x]= df['WonGames']. iloc[x]/ df['PlayedGames'].

iloc[x]

df['lost']. iloc[x]= df['LostGames']. iloc[x]/df['PlayedGames'].

iloc[x]

df['win%']. iloc[x]= (df['WonGames']. iloc[x]+ 0.5*

df['DrawnGames']. iloc[x])/ df['PlayedGames']. iloc[x]

Here is the scatter plot obtained

We used lineplot to find the teams with lowest performance:

ax1 = sns.set_style (style=None, rc=None)

fig, ax1 = plt. subplots (figsize= (10,5))

sns. lineplot ('Team', 'win%', data = df. nsmallest (10, 'win%'))

ax2 = ax1.twinx()

sns. barplot (data = df. nsmallest (10, 'win%'), x='Team', y='LostGames',

alpha=0.5, ax=ax2)

Similarly, the highest winning% teams are:

We then used a pie chart to find the teams with most tournament champion trophies

All this EDA helped us reach to the conclusion that we can approach any of the top 5 teams, namely

TEAM 1,2,3,4,5 for the next matches with high possibility of winning.

Logistic Regression

The classification problem is when the values we now want to predict take on a small number of

discrete values. For this report, we will focus on the binary classification problem in which y can

take on only two values, 0 and 1. (Most of what we show here will also generalize to the

multiple-class case.)

Given x
(i) (parameterized by θ), the corresponding y(i)

is also called the label for the training

example.

Intuitively, we want the hypothesis hθ(x), to be in the range (0,1) when we know that y ∈ {0, 1}.

We choose the hypothesis to be,

 , where

 , is called the logistic function or the sigmoid

function.

g(z)→0 when z→ -∞ and g(z)→1 when z→∞

A useful property of the derivative of the sigmoid function is that,

 (

)

Learning in Logistic Regression

Given the logistic regression model, we can fit θ for it under a set of probabilistic assumptions

via maximum likelihood.

Assuming,

 |

 |

A succinct way to formulize the above is,

 |
 ()

If we have m independently generated training examples, the likelihood L(θ) of the parameters

may be written as,

 |

 (

)

 ((
))

Taking the log of likelihood would make it easier to maximize. However, convention dictates

that the objective function should be minimized so we change the sign. So,

 ∑ ()

This function is also known as the cross-entropy loss. We may minimize this loss using gradient

descent, which allows us to minimize the function with the steepest descent. Taking one training

example (x, y) and calculating the gradients for the gradient descent update rule.

 (() ())

 ()

Therefore, our gradient update rule is

 ((
))

Underfitting and Overfitting

What is Overfitting?

Overfitting occurs when a statistical model fits exactly against training data. When this happens,

the algorithm becomes inaccurate against testing data. Generalisation, which allows a model to

predict and classify data, becomes difficult.

When a machine learning algorithm is constructed, they leverage a sample dataset to train the

model. However, if model is complex or trains too long on sample data, it starts to learn the

noise in the dataset. When model learns the noise, it fits too closely to the training set, the model

is overfitted and unable to generalise new data well. In such cases, the model can‟t generalise

well to new data and not perform classification or prediction tasks that it was meant for.

High variance and low error rates indicate overfitting. To prevent this, part of the training set is

set aside as a test set to check overfitting. If training data has low error rate but test data has a

high corresponding value, there could be overfitting.

Overfitting vs Underfitting

If training process is ended early or less relevant variables are eliminated in an attempt to prevent

overfitting, the model may be underfitted. Underfitting occurs when the model is not trained long

enough or variables are not significant enough to determine a meaningful relationship between

the variables.

In either case, the model can‟t establish the dominant trend within the training set and generalise

poorly. An underfitted model experiences high bias and low variance in the predictions. This is

the bias variance tradeoff. When fitting a model, the goal is to find the right balance between

underfitting and overfitting to establish a dominant trend to be applied to real datasets.

Detecting Overfitting

To understand the accuracy of models, it is important to test for fitness. K-fold cross-validation

is one of the most popular model accuracy tests.

In k-folds cross-validation, the dataset is split into k equal subsets, called folds. One of the folds

will act as the test set, called the validation set while the remaining models train the model. The

process is repeated until each fold is used as the validation set. After each evaluation, a score is

retained and once all evaluations are done, the scores are averaged to calculate the performance

of the model.

Suppose we divide the dataset into 5 subgroups. The process can be visualized like this:

Performance Metrics for Classification

Evaluating the performance of a Machine learning model is one of the important steps while

building an effective ML model. For this purpose, various metrics are used, known as

performance or evaluation metrics. The metrics chosen to evaluate the ML model are very

important as they influence how the performance of the algorithms are measured and compared.

Types of Metrics:

1. Confusion Matrix

2. Accuracy

3. Precision

4. Recall

5. F-Score

1. Confusion Matrix:

Confusion matrices are used to evaluate classification problems where the output can be of two

or more classes.

For example, let‟s say we are solving a classification problem where we are predicting whether a

person is having cancer or not.

Assigning values:

1 – Person has cancer

0 – Person doesn‟t have cancer

The confusion matrix is a table with two dimensions (Actual and Predicted) and sets of classes in

both dimensions.

Columns – Actual classifications

Rows - Predicted classifications

 PREDICTED

Positives (1)

TP

FP

 ACTUAL

 Positives (1) Negatives (0)

Terminology:

1. True Positive (TP): Actual class of the data point is 1 (True) and the predicted is also 1

(True).

Eg: The person has cancer (1) and the model classifies their case as cancer (1).

2. True Negative (TN): Actual class of the data point is 0 (False) and the predicted is also 0

(False).

Eg The person doesn‟t have cancer (0) and the model classifies their case as not cancer (0).

3. False Positive (TP): Actual class of the data point is 0 (False) and the predicted is 1

(True).

Eg The person doesn‟t have cancer (0) and the model classifies their case as cancer (1).

4. False Negative (FN): Actual class of the data point is 1 (True) and the predicted is 0

(False).

Eg: The person has cancer (1) and the model classifies their case as not cancer (0).

In an ideal scenario, the model gives 0 False Positives and 0 False Negatives but most models

aren‟t that accurate. Depending on the type of model, you can decide if minimizing the number

of False Positives is more important than minimizing the number of False Negatives.

2. Accuracy:

Accuracy is a simple metric to use but is only suitable for cases where the target variable classes

are approximately balanced.

Negatives (0)

FN

TN

When To Use Accuracy?

Eg: 60% classes in fruit images data are apples and 40% are oranges.

A model that predicts whether a new image is an apple or orange 97% of the time is a very good

measure.

When Not to Use Accuracy?

Eg: In a model that detects cancer in patients, out of the 100 people, let 5 of them have cancer. If

the model is bad and classifies every case as not having cancer, then the 95 non-cancer patients

are diagnosed accurately whereas the 5 cancerous patients are diagnosed inaccurately which can

be very dangerous. Even though the model is bad at predicting cancer, its accuracy is still 95%.

3. Precision:

Precision is used to overcome the limitations of Accuracy by determining the proportion of

positive predictions that were actually correct.

Eg: In the cancer model, it determines the proportion of patients who had cancer and were also

diagnosed as having cancer.

4. Recall or Sensitivity:

Though similar to Precision, it is used to determine the proportion of positive predictions that

were incorrect.

Thus, maximizing Precision minimizes FP errors and maximizing Recall minimizes FN errors.

5. F – Scores:

F – Scores are used in cases where we need both Precision and Recall. Since simply taking the

arithmetic mean of the two metrics will give a highly biased answer in some situations, we

calculate their harmonic mean instead which is more balanced.

Support Vector Machines

What is a Support Vector Machine?

The objective of SVM algorithm is to find a hyperplane in an N- dimensional space, N is the number of

features, to classify the data.

The idea behind SVM is:

1. We start with data in a relatively low dimension, let's start with data in 1-Dimension.

2. We move the data into a higher dimension, say 2-Dimensional.

3. Now we find a Support Vector Classifier that separates the data into two groups.

We select the hyperplane with the highest margin in order to classify new data points with the greatest

accuracy. There are many possible hyperplanes, but we select the one with the highest margin.

What is a support vector?

Orientation and position of the hyperplane are influenced by support vectors. The margin of the classifier

is maximized with these support vectors. The position of the hyperplane will change if support vectors are

removed, the SVM‟s are built around these points.

But now the next question arises as to how we transform the data?

SVM‟s use something called the kernel functions to systematically find support vector classifiers in

higher dimensions.

Kernel Functions:

The term "Kernel" refers to the mathematical functions used in Support Vector Machines for

manipulating data. As a result, Kernel Functions generally transform the training data so that non-linear

decision surfaces can be transformed into linear equations in more dimensions.

Radial Kernel/Radial Basis Function Kernel:

Equation for radial basis kernel:

f (X1, X2) = exp(-gamma * ||X1 - X2||^2)

The value of gamma is determined by cross validation.

Radial kernels are used to find support vector classifiers in infinite dimensions. Our classification of new

observations is heavily influenced by the closest observations.

Rather than actually transforming the points, kernel functions only calculate their relations as if they were

already in the higher dimension.

A kernel trick enables SVM to calculate relationships in infinite dimensions using Radial kernels,

reducing the computation required for SVM.

Naive Bayes

Introduction:

Naive Bayes is one of the most efficient and effective inductive supervised learning algorithms

for machine learning and data mining. It's based on applying Bayes‟ theorem with the “Naive”

assumption of conditional independence between every pair of features given the value of the

class variable. Its competitive performance in classification is surprising, because the conditional

independence assumption on which it is based, is rarely true in real-world applications.

Example Consider a “Pima Indians Diabetes” data set.

The objective of the dataset is to diagnostically predict whether or not a patient has diabetes,

based on certain diagnostic measurements included in the dataset. Several constraints were

placed on the selection of these instances from a larger database. In particular, all patients here

are females at least 21 years old of Pima Indian heritage.

The first five rows of the data set.

https://drive.google.com/file/d/1Yb8PlzJfhd59GbOj5_hfmJup7n_YzzQp/view?usp=sharing

Assumption:

The fundamental Naive assumption is that each feature makes an:

● independent, and

● equal

contribution to the outcome.

Bayes’ Theorem:

Bayes‟ Theorem finds the probability of an event occurring given the probability of another

event that has already occurred. Bayes‟ theorem is stated mathematically as the following

equation:

 |
 |

where A and E are events and P(E) ≠ 0.

● Basically, we are trying to find probability of event A, given that the event E is true.

Event E is also termed as evidence.

● P(A) is the priori of A (the prior probability, i.e., Probability of event before evidence is

seen). The evidence is an attribute value of an unknown instance (here, it is event E).

● P(A|E) is a posteriori probability of E, i.e., probability of event after evidence is seen.

Now, with regards to our dataset, we can apply Bayes‟ theorem in following way

 |
 |

where, Y is class variable and X is an independent feature vector (of size n) where:

Y= y and

In our data set feature vector and corresponding class variable are:

X = (Preg, Plas, Pres, skin, test, mass, pedi, age)

Y = class

So basically, P(Y|X) here means, the probability of “having diabetes”, class (0 or 1), given that

the following constraints

● Preg: Number of times pregnant

● Plas: Plasma glucose concentration 2 hours in an oral glucose tolerance test

● Pres: Diastolic blood pressure (mm Hg)

● skin: Triceps skin fold thickness (mm)

● test: 2-Hour serum insulin (mu U/ml)

● mass: Body mass index (weight in kg/ (height in m)
2
)

● pedi: Diabetes pedigree function

● age: Age (years)

Naive Assumption:

Now, it‟s time to put a Naive assumption to the Bayes‟ theorem, which is, independence among

the features. So now, we split evidence into the independent parts.

Now, if any two events A and B are independent, then

P(AB) = P(A)P(B) i.e., P(A|B) = P(A) or P(B|A) = P(B)

Now, equation (1) can also be written as:

Using the Naive conditional independence assumption that

 | |

for all , this relationship is simplified to

 ∏

Since, is constant given the input, we can use the following classification rule:

 ∏

 ∏

and we can use Maximum A Posteriori (MAP) estimation to estimate and ; the

former is then the relative frequency of class in the training set.

The different Naive Bayes classifiers differ mainly by the assumptions they make regarding the

distribution of .

Gaussian Naive Bayes:

In Gaussian Naive Bayes, continuous values associated with each feature are assumed to be

distributed according to a Gaussian distribution. A Gaussian distribution is also called Normal

distribution. Plotting the distribution gives a bell-shaped curve which is symmetric about the

mean of the feature values.

The likelihood of the features is assumed to be Gaussian; hence, conditional probability is given

by:

√

The parameters and

 are estimated using maximum likelihood.

Implementation of Gaussian Naive Bayes:

Now, let‟s predict whether or not a patient has diabetes using Gaussian Naive Bayes.

● First, let‟s see if there any null value in data set.

● Let‟s check the correlation between features and class variables.

● Heatmap

● Calculating diabetes ratio of True/False from outcome variable:

True outcome is represented as 1 and False outcome as 0.

True cases% =

False cases% =

So, we have 34.90% people in current data set who have diabetes and rest of 65.10% doesn't

have diabetes.

It‟s a good distribution True/False cases of diabetes in data.

● Splitting the data

we will use 70% of data for training and 30% for testing.

● Checking hidden missing values

As we checked missing values earlier but haven't gotten any. But there can be lots of entries with

0 values. We must need to take care of those as well.

We can see lots of 0 entries above.

● Replacing 0s with serial mean

● Training Naïve Bayes Algorithm

● Performance of our model with training data

● Performance of our model with testing data

● Confusion matrix and classification report

We can see our true positive numbers with value 1 is of precision and it was below 70%.

Drawbacks:

● Naive Bayes assumes that all predictors (or features) are independent, rarely happening in

real life. This limits the applicability of this algorithm in real-world use cases.

● This algorithm faces the „zero-frequency problem‟ where it assigns zero probability to a

categorical variable whose category in the test data set wasn‟t available in the training

dataset. It would be best if you used a smoothing technique to overcome this issue.

● Its estimations can be wrong in some cases, so we shouldn‟t take its probability outputs

very seriously.

KNN Algorithm

What is KNN Algorithm?

● K-Nearest Neighbors is one of the simplest Machine Learning algorithms based on

Supervised Learning.

● K-NN algorithm assumes the similarity between the new case/data and available cases

and put the new case into the category that is most similar to the available categories.

● K-NN algorithm can be used for Regression as well as for Classification but primarily it

is used for Classification problems.

● K-NN is a non-parametric algorithm, which means it does not make any assumption on

underlying data.

● It is also called a lazy learner algorithm because it does not learn from the training set

immediately instead it stores the dataset and at the time of classification, it performs an

action on the dataset.

● Example - Given below is the pictorial representation of how the KNN classifier works.

● Firstly, we will choose the number of neighbors, so we will choose k=5.

● Next, we will calculate the Euclidean distance between the data points. The Euclidean

distance is the distance between two points, which we have already studied in geometry.

It can be calculated as:

●

● By calculating the Euclidean distance, we got the nearest neighbors, as three nearest

neighbors in category A and two nearest neighbors in category B.

● As we can see the 3 nearest neighbors are from category A, hence this new data point

must belong to category A.

How does KNN work?

The K-NN working can be explained on the basis of the below algorithm:

● Step-1: Select the number K of the neighbors

● Step-2: Calculate the Euclidean distance of K number of neighbors

● Step-3: Take the K nearest neighbors as per the calculated Euclidean distance.

● Step-4: Among these k neighbors, count the number of the data points in each category.

● Step-5: Assign the new data points to that category for which the number of neighbors is

maximum.

● Step-6: Our model is ready.

Python implementation of the KNN algorithm

Domain: Medical

Context: Medical research university X is undergoing deep research on patients with certain

conditions. University has an internal AI team. Due to confidentiality the patient‟s details and

conditions are masked by the client by providing different datasets to the AI team for developing

an AIML model which can predict the condition of the patient depending on the received test

results.

Data Description: The data consists of biomechanics features of the patients according to their

current conditions. Each patient is represented in the data set by six biomechanics attributes

derived from the shape and orientation of the condition to their body part.

Project Objective: To Demonstrate the ability to fetch, process, and leverage data to generate

useful predictions by training Supervised Learning algorithms.

Steps to implement the K-NN algorithm:

● Data Pre-processing step

● Fitting the K-NN algorithm to the Training set

● Predicting the test result

● Test accuracy of the result (Creation of Confusion matrix)

Data Preprocessing and EDA

1. Importing the necessary libraries

2. Loading all three datasets

3. After observing the datasets, modifications are needed in the “Class” feature in each

dataset to ensure proper labeling of the three classes.

Observation

There is a significant correlation between P_incidence and S_slope, and some moderate

correlation between P_incidence and L_angle.

Univariate, Bivariate, and Multivariate Analysis

Observation

● The above plot displays a scatterplot with two histograms at the margins of the graph. If you

observe the scatterplot, there seems to be a positive relationship between the columns

'P_incidence' and 'S_Slope', because if the values of one variable increase so do the other.

● The strength of the relationship appears to be strong. The marginal histograms are both right-

skewed as most values are concentrated around the left side of the distribution while the right side

of the distribution is longer.

● Outliers are the data points that lie far away from the rest of the data values, in the graph we can

see a few outliers in the scatterplot as well as the histograms.

Removing the outliers

KNN BASE MODEL

Classification matrix

We can clearly tell the difference in precision for different classes. Our KNN Classifier with k =

7 classifies the Normal class with 80% accuracy and 94% accuracy for Type_S, however

precision for Type H is very low. Hence, we need to use a better value of k.

Finding the best Value of K

Accuracy decreases for an increase in k for training data, however, accuracy is maximum for 13

< k < 20. Let's try checking the accuracy when k = 13, 15,17,19

Observation: K = 15 produces the best results for our given dataset.

REFERENCES

● https://www.analyticsvidhya.com/blog/2021/05/knn-the-distance-based-machine-

learning-algorithm/

● https://machinelearningmastery.com/radius-neighbors-classifier-algorithm-with-

python/#:~:text=Radius%20Neighbors%20Classifier%20is%20a,than%20the%20k%2Dc

losest%20neighbors

● https://scikit-

learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html

● https://www.javatpoint.com/k-nearest-neighbor-algorithm-for-machine-learning

● https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html

● https://en.wikipedia.org/wiki/Radial_basis_function_kernel

● https://www.kaggle.com/datasets/mathchi/diabetes-data-set?resource=download

● https://www.aaai.org/Papers/FLAIRS/2004/Flairs04-097.pdf

● https://en.wikipedia.org/wiki/Naive_Bayes_classifier

● http://gerardnico.com/wiki/data_mining/Naive_bayes

● http://scikit-learn.org/stable/modules/Naive_bayes.html

● https://www.ibm.com/cloud/learn/overfitting

● https://www.javatpoint.com/performance-metrics-in-machine-learning

● https://medium.com/@MohammedS/performance-metrics-for-classification-problems-in-

machine-learning-part-i-b085d432082b

https://www.analyticsvidhya.com/blog/2021/05/knn-the-distance-based-machine-learning-algorithm/
https://www.analyticsvidhya.com/blog/2021/05/knn-the-distance-based-machine-learning-algorithm/
https://machinelearningmastery.com/radius-neighbors-classifier-algorithm-with-python/#:~:text=Radius%20Neighbors%20Classifier%20is%20a,than%20the%20k%2Dclosest%20neighbors
https://machinelearningmastery.com/radius-neighbors-classifier-algorithm-with-python/#:~:text=Radius%20Neighbors%20Classifier%20is%20a,than%20the%20k%2Dclosest%20neighbors
https://machinelearningmastery.com/radius-neighbors-classifier-algorithm-with-python/#:~:text=Radius%20Neighbors%20Classifier%20is%20a,than%20the%20k%2Dclosest%20neighbors
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://www.javatpoint.com/k-nearest-neighbor-algorithm-for-machine-learning
https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html
https://en.wikipedia.org/wiki/Radial_basis_function_kernel
https://www.kaggle.com/datasets/mathchi/diabetes-data-set?resource=download
https://www.aaai.org/Papers/FLAIRS/2004/Flairs04-097.pdf
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
http://gerardnico.com/wiki/data_mining/naive_bayes
http://scikit-learn.org/stable/modules/naive_bayes.html
https://www.ibm.com/cloud/learn/overfitting
https://www.javatpoint.com/performance-metrics-in-machine-learning
https://medium.com/@MohammedS/performance-metrics-for-classification-problems-in-machine-learning-part-i-b085d432082b
https://medium.com/@MohammedS/performance-metrics-for-classification-problems-in-machine-learning-part-i-b085d432082b

