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Abstract 

 

This project is everything about exploring the most demanding topic of 

today's technological nature, i.e., machine learning and its types. We are here 

mainly focusing on the major types of machine learning and their 

applications. Along with its myriad applications, we will come across the 

various machine learning systems and deeply analyze the mathematical and 

statistical models like overfitting & underfitting, linear regression, logical 

regression, and many more. It also examines the gradient descent algorithm 

that is most important in minimizing the cost function to get the best model 

with high efficiency. Apart from these, this project also focuses on SVM, 

KNN, and Naive Bayes Classifier in detail and deeply its functions 

incorporating the required mathematical and statistical models.  

 

The aim of this project is first to deep dive into the theoretical aspects of 

descriptive statistics, overfitting & underfitting, gradient descent, linear 

regression, logistic regression, performance metrics, support vector machine 

(SVM), k-nearest neighbor (KNN), and Naive Bayes classifier and then 

incorporate them into its application. Our primary focus is to do exploratory 

data analysis (EDA) and predict results by building mathematical and 

statistical models. We have done EDA on the basketball and healthcare data 

sets. We use the kernel function in SVM to manipulate data. And, the Naive 

Bayes Classifier to predict whether or not the patient has diabetes. And also 

uses, the KNN Classifier on a medical data set and makes the statistical 

model predict the condition of the patient depending on the received test 

results. We utilize the Jupyter Notebook to document our python code that 

aims at creating such models. We also hope to achieve a sufficient level of 

accuracy for our model to work correctly. 

 

Towards the end of this project, we also observe the drawbacks of our model 

and move on to further discuss the bright future that data science and 

artificial intelligence hold while also spreading their applications to a wide 

variety of fields, including healthcare, sports, etc. 

 



 

 

Descriptive Statistics 
 

A measure of central tendency is a single value that tries to represent a dataset by identifying the 

central position within that set of data. Measures of central tendency are also called measures of 

central location. The mean (often called the average) is the most popular measure of central 

tendency. Other central tendencies are the median and mode. 

The mean, median and mode are all valid measures of central tendency. Some situations make 

one more appropriate than the others. In this summary, we will describe these measures and 

advise when they should be invoked.  

 

 

Mean 

The mean is equal to the sum of all the values in the data divided by the cardinality of the 

dataset. So, if we have n values in a data set and they have values            , the sample 
mean x   is  

 

 ̅  
             

 
 

 

 

This can be written more concisely with the summation notation, 

 

 ̅  
 ∑    

 
 

 
 

 

As this mean is derived from a dataset of n points, we refer to it as the sample mean. The mean 

of the entire population is denoted by μ. 

 

Important features of the mean: 

 It minimizes error in the prediction of any one value in your data set. 

 Its calculation involves every point in the dataset. 

 It the only measure of central tendency where the sum of deviations of each value 

from the mean is always zero. 

 It is generally used when the data is continuous 

 

Drawback(s): 

Means are susceptible to outliers which might cause some misrepresentation of the data. For 

example: If we measure the heights of 5 people and their heights (in meters) are 1.67, 1.62, 1.65, 

1.64, 6. The average height here would be 2.52, which is not a good representation of the general 

trend in heights even within this small sample. Also, what‟s disconcerting is that we may have 

giants walking among us.  



 

 

 

Median 

The median denotes the value lying at the midpoint of a frequency distribution of observed 

values or quantities, so that there is an equal probability of a data point being greater than or less 

than it. It is also commonly referred to as the 50th percentile. To find the median of the 

distribution it must first be sorted, and then the value in the „middle‟ (in case of odd number of 

points) or the average of the two terms in the „middle‟ (in case of even number of points) is 

selected as the median of the distribution.  

 

 

Mode 

The mode is the most commonly recurring value in the dataset. It is generally considered when 

dealing with categorical variables, where the most common category must be ascertained.  

 

Skewed Distributions  

 

Often, we check if the data is distributed normally as many statistical tests require this 

underlying assumption. When the data is normally distributed, the usual measure for central 

tendency that is considered is the mean even though in a normal distribution the mean and 

median are the same. This is done because the mean is more representative of the data since all 

the data points are used in its calculation.  

However, if the data is skewed in either direction, the mean is pulled towards the direction in 

which the data is skewed. In these situations, the median is usually considered as the measure for 

central tendency. The greater the skewness, the greater is the distance between the mean and the 

median. 

 

 

 

 

 

 

 

 

 

 

 

  



 

Linear Regression 

 
In statistics, we use regression to model a target (dependent) variable based on some explanatory 

(independent) variables. We use this technique to establish a cause-and-effect relationship 

between variables.  

Simple Linear Regression involves one independent variable and a linear relationship between 

the independent and dependent variables.  

The equation used for the same is: 

                

where                                                                

                          

 

In simple linear regression, we aim to find the best value for    and    . 

In order to achieve this, we find the line of best fit. Any line would be termed as best if the error 

between the predicted values of y and actual values of y is the minimum.  

This now becomes a minimization problem with the error function as  
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Where,    ̂= predicted value and   = actual value 

The function J is called the cost function or mean squared error (MSE) function.  

Here, we square the error term because of these few reasons: 

1. When we consider    ̂     ), some error values might get eliminated because of opposite 

signs and the overall error be reduced but that wouldn‟t indicate a good line of fit. 

2. One might go ahead with |  ̂     | this function in order to make sure that error terms 

don‟t result in nullification but here, this function might not be differentiable everywhere. 

So, we square the term since graphs of even functions are easier to derive. 

3. Also, |  ̂     | is more robust to outliers when compared with the squared term. 

 

We also follow some assumptions for SLR: 

1.   is independent of the error term 

2. The variance of residuals is same for all values of x 

3. The mean value of residuals is zero 

 

 

Assumption 2 and 3 suggests that the error term is normally distributed. Here is an explanation 

of why the mean should be zero. 

Let linear regression model be yi = β1 + β2 X2i + β3 X3i +…+ βk Xi + ui (a data point in K 

dimensions)   

Assume E (Ui |X2i, X3i, …, Xki) =W (W is a constant, in standard model W=0) 

Conditional expectations of the equation for yi can be expressed as  

a. E (yi |X2i, X3i, …, Xki) = β1 + β2 X2i + β3 X3i +…+ βk Xi + W 



 

b. => (β1+W) + β2 X2i + β3 X3i+…+ βk Xi 

c. => α + β2 X2i + β3 X3i+…+ βk Xi  where α=(β1+W) 

 

Given the training data, the Xs are treated as constant while the βS are the variables 

 

If the assumption 3 is not fulfilled, we cannot solve the equation for β1 ! 

Now, the question arises how do we minimize the square function? 

For this, we use gradient descent algorithm 

 

 

Gradient Descent: 
 

Gradient Descent is an optimization algorithm. An optimization algorithm helps us to minimize 

(or maximize) an objective function (Error function) E(x) such as Sum of Squared Errors 

(SSE) which is basically a mathematical function dependent on the model's learnable parameters 

which are used in computing the target  

value(Y) from the set of predictors(X) used in the model. The optimizer algorithms try to 

estimate the values of wi and b in the cost function, C= ½ ((wi. xi + b) – y) which when used, 

will give minimum or maximum C. In ML we look for minimum value instead of the maximum 

value. 

 

Gradient in Gradient descent refers to a vector that is tangent of a function and points in the 

direction of greatest increase of this function. Gradient is zero at a local maximum or minimum 

because there is no single direction of increase. In mathematics, gradient is defined as a partial 

derivative for every input variable of a function. 

Here, we use the concept of Negative gradient which is a vector pointing at the greatest decrease 

of a function. Therefore, we can minimize a function by iteratively moving a little bit in the 

direction of negative gradient. 

 

One must wonder why we use gradient descent instead of manually differentiating the cost 

function? 

This is because, in problems wherein there are more than two weights/slopes that need to be 

adjusted, it is not manually possible to find the right combination of weights using brute force. 

 

 

Graphical representation of Gradient Descent: 

 

1. A random combination of bias B1 and input weights W1 

(more than one is not possible to visualize) 

 



 

2. Each combination of W1 and B1 is one particular linear model in a neuron. That model is 

associated with proportionate error e1 (red dashed line). 

 

3. Objective is to drive e1 towards 0. For which we need to find the optimal weight (Woptimal) 

and bias (Boptimal) 

 

 

 

 

 

4. The algorithm uses gradient descent algorithm to 

change bias and weight from starting values of B1 and 

W1 towards the Boptimal, Woptimal. 

This movement from starting weight and bias to 

optimal weight and bias may not happen in one shot. It 

is likely to happen in multiple iterations. The step size 

can be influenced using a parameter called Learning 

Rate. It decides the size of the steps i.e., the amount by 

which the parameters are updated.  

Too small a learning step will slow down the entire 

process while too large may lead to an infinite loop. 

 

 

 

 

5. Every ring on the error function represents a combination of 

coefficients (m1 and m2 in the image) which result in same 

quantum of error i.e., SSE  

 

6. Let us convert that to a 2d contour plot. In the contour plot, 

every ring represents one quantum of error.  

 

7. The innermost ring / bull‟s eye is the combination of the 

coefficients that gives the least SSE  

 

 

If we look closely at the contour plot, we would find out the following points: 

 

1. Outermost circle is highest error while innermost is the least error circle  

2. A circle represents a combination of parameters which result in the same error. Moving on a 

circle will not reduce error.  

3. Objective is to start from anywhere but reach the innermost circle.  

 



 

Steps to evaluate Gradient Descent: 

 

1. First evaluate dy(error)/d(weight) to find the direction of highest increase in error given a unit 

change in weight (Blue arrow). Partial derivative w.r.t. to weight  

2. Next find dy(error) /d(bias) to find the direction of highest increase in error given a unit 

change in bias (green arrow). Partial derivative w.r.t. to bias  

3. Partial derivatives give the gradient in the given axis and gradient is a vector  

4. Add the two vectors to get the direction of gradient (black arrow) i.e., direction of max 

increase in error  

5. We want to decrease error, so find the negative of the gradient i.e., opposite to black arrow  

(Orange arrow). The arrow tip is a new value of bias and weight.  

6. Recalculate the error at this combination an iterate to step 1 till movement in any direction 

only increases the error 

 
 

 

 

 

Test statistic: R^2 

 
It is called the coefficient of determination and explains variation in y around its mean. One can 

think of it as a measure of variability between dependent and independent variables (how much 

variance can the model explain about the dependent variable). A high value suggests that there is 

less difference between predicted and actual values.  

We use this formula to calculate R^2: 

 

 
 

 

 

 

 



 

Exploratory Data Analysis on Basketball Teams Dataset 

 

Basketball EDA task 
 

The given dataset about different basketball teams had 12 columns including Team Tournament, 

Score, PlayedGame, WonGames, DrawnGames, LostGames, BasketScored, BasketGiven, 

TournamentChampion, Runner-up, TeamLaunch, HighestPositionHeld. 

 

There were 61 entries in the dataset and there were no null entries in the dataset. 

 

We started with analyzing the number of games won and saw that the data is right skewed with 

most of the teams winning 0-200 matches and few winning more than 250 matches. 

 
We used seaborn library to visualize the next part of the dataset. To find the top 20 teams with 

highest score and the greatest number of matches won, we used the following code snippet: 

 
We then used a heatmap to find correlations among the various variables and found that there is 

a very strong correlation between games won, baskets scored, and score 



 

 
We also added a new column called the winning probability and losing probability along with 

winning percentage by using the following code: 

x=0 

df['prob'] =0 

for x in range (61): 

     df['prob']. iloc[x]= df['WonGames']. iloc[x]/ df['PlayedGames']. 

iloc[x] 

df['lost']. iloc[x]= df['LostGames']. iloc[x]/df['PlayedGames']. 

iloc[x] 

df['win%']. iloc[x]= (df['WonGames']. iloc[x]+ 0.5* 

df['DrawnGames']. iloc[x])/ df['PlayedGames']. iloc[x] 

 

 

Here is the scatter plot obtained 

 



 

 

We used lineplot to find the teams with lowest performance: 

ax1 = sns.set_style (style=None, rc=None) 

 

fig, ax1 = plt. subplots (figsize= (10,5)) 

 

sns. lineplot ('Team', 'win%', data = df. nsmallest (10, 'win%')) 

ax2 = ax1.twinx() 

sns. barplot (data = df. nsmallest (10, 'win%'), x='Team', y='LostGames', 

alpha=0.5, ax=ax2) 

 

 
Similarly, the highest winning% teams are: 

 
We then used a pie chart to find the teams with most tournament champion trophies 



 

 
 

All this EDA helped us reach to the conclusion that we can approach any of the top 5 teams, namely 

TEAM 1,2,3,4,5 for the next matches with high possibility of winning. 

 

 

 

 

 

 

 

 

 

 

Logistic Regression 
 

The classification problem is when the values we now want to predict take on a small number of 

discrete values. For this report, we will focus on the binary classification problem in which y can 

take on only two values, 0 and 1. (Most of what we show here will also generalize to the 

multiple-class case.) 

Given x
(i) (parameterized by θ), the corresponding y(i) 

is also called the label for the training 

example. 

Intuitively, we want the hypothesis hθ(x), to be in the range (0,1) when we know that y ∈ {0, 1}. 

We choose the hypothesis to be, 

              
 

       
  , where      

 

     
  , is called the logistic function or the sigmoid 

function.  

g(z)→0 when   z→ -∞             and                g(z)→1 when   z→∞ 

 



 

A useful property of the derivative of the sigmoid function is that, 

      
 

  
 

 

     
 

  
 

        
    

  
 

     
 (  

 

     
 )               

 

 

 

Learning in Logistic Regression 

 

Given the logistic regression model, we can fit θ for it under a set of probabilistic assumptions 

via maximum likelihood. 

Assuming,  

      |            

 

     |             

 

A succinct way to formulize the above is, 

     |          
  (       )

   
 

 

If we have m independently generated training examples, the likelihood L(θ) of the parameters 

may be written as, 

 

           
        |         

  

                
    ( 

   )
    

 (    ( 
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Taking the log of likelihood would make it easier to maximize. However, convention dictates 

that the objective function should be minimized so we change the sign. So, 

 

              

 

 ∑        (    )          

 

 

                

 

This function is also known as the cross-entropy loss. We may minimize this loss using gradient 

descent, which allows us to minimize the function with the steepest descent. Taking one training 

example (x, y) and calculating the gradients for the gradient descent update rule. 
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Therefore, our gradient update rule is 
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Underfitting and Overfitting 

 

 
What is Overfitting? 

Overfitting occurs when a statistical model fits exactly against training data. When this happens, 

the algorithm becomes inaccurate against testing data. Generalisation, which allows a model to 

predict and classify data, becomes difficult.  

When a machine learning algorithm is constructed, they leverage a sample dataset to train the 

model. However, if model is complex or trains too long on sample data, it starts to learn the 

noise in the dataset. When model learns the noise, it fits too closely to the training set, the model 

is overfitted and unable to generalise new data well. In such cases, the model can‟t generalise 

well to new data and not perform classification or prediction tasks that it was meant for. 



 

High variance and low error rates indicate overfitting. To prevent this, part of the training set is 

set aside as a test set to check overfitting. If training data has low error rate but test data has a 

high corresponding value, there could be overfitting. 

 

Overfitting vs Underfitting 

If training process is ended early or less relevant variables are eliminated in an attempt to prevent 

overfitting, the model may be underfitted. Underfitting occurs when the model is not trained long 

enough or variables are not significant enough to determine a meaningful relationship between 

the variables. 

 
In either case, the model can‟t establish the dominant trend within the training set and generalise 

poorly. An underfitted model experiences high bias and low variance in the predictions. This is 

the bias variance tradeoff. When fitting a model, the goal is to find the right balance between 

underfitting and overfitting to establish a dominant trend to be applied to real datasets. 



 

 
Detecting Overfitting  

To understand the accuracy of models, it is important to test for fitness. K-fold cross-validation 

is one of the most popular model accuracy tests. 

In k-folds cross-validation, the dataset is split into k equal subsets, called folds. One of the folds 

will act as the test set, called the validation set while the remaining models train the model. The 

process is repeated until each fold is used as the validation set. After each evaluation, a score is 

retained and once all evaluations are done, the scores are averaged to calculate the performance 

of the model. 

Suppose we divide the dataset into 5 subgroups. The process can be visualized like this: 

 
 

 

 

 



 

 

Performance Metrics for Classification 

 
Evaluating the performance of a Machine learning model is one of the important steps while 

building an effective ML model. For this purpose, various metrics are used, known as 

performance or evaluation metrics. The metrics chosen to evaluate the ML model are very 

important as they influence how the performance of the algorithms are measured and compared. 

 

Types of Metrics: 

 

1. Confusion Matrix 

2. Accuracy 

3. Precision 

4. Recall 

5. F-Score 

 

1. Confusion Matrix: 

 

Confusion matrices are used to evaluate classification problems where the output can be of two 

or more classes. 

For example, let‟s say we are solving a classification problem where we are predicting whether a 

person is having cancer or not. 

 

Assigning values: 

 

1 – Person has cancer 

0 – Person doesn‟t have cancer 

 

The confusion matrix is a table with two dimensions (Actual and Predicted) and sets of classes in 

both dimensions. 

 

Columns – Actual classifications 

Rows - Predicted classifications 

 

 

 

                                                                                                       
 

 

          PREDICTED 
 

 
Positives (1) 

 

TP 
 

FP 



 

 

                                                                               

                                                                                              

                                                                                                                    ACTUAL 

     

                                                             Positives (1)                       Negatives (0) 

 

 

  

Terminology: 

 

1. True Positive (TP): Actual class of the data point is 1 (True) and the predicted is also 1 

(True). 

Eg: The person has cancer (1) and the model classifies their case as cancer (1). 

 

2. True Negative (TN): Actual class of the data point is 0 (False) and the predicted is also 0 

(False). 

Eg  The person doesn‟t have cancer (0) and the model classifies their case as not cancer (0). 

 

3. False Positive (TP): Actual class of the data point is 0 (False) and the predicted is 1 

(True). 

Eg  The person doesn‟t have cancer (0) and the model classifies their case as cancer (1). 

 

4. False Negative (FN): Actual class of the data point is 1 (True) and the predicted is 0 

(False). 

Eg: The person has cancer (1) and the model classifies their case as not cancer (0). 

 

In an ideal scenario, the model gives 0 False Positives and 0 False Negatives but most models 

aren‟t that accurate. Depending on the type of model, you can decide if minimizing the number 

of False Positives is more important than minimizing the number of False Negatives. 

 

2. Accuracy: 

  

 
 

Accuracy is a simple metric to use but is only suitable for cases where the target variable classes 

are approximately balanced.  

 

  
Negatives (0) 

 

FN 
 

TN 



 

When To Use Accuracy? 

 

Eg: 60% classes in fruit images data are apples and 40% are oranges. 

A model that predicts whether a new image is an apple or orange 97% of the time is a very good 

measure. 

 

When Not to Use Accuracy? 

 

Eg: In a model that detects cancer in patients, out of the 100 people, let 5 of them have cancer. If 

the model is bad and classifies every case as not having cancer, then the 95 non-cancer patients 

are diagnosed accurately whereas the 5 cancerous patients are diagnosed inaccurately which can 

be very dangerous. Even though the model is bad at predicting cancer, its accuracy is still 95%. 

 

3. Precision: 

 

Precision is used to overcome the limitations of Accuracy by determining the proportion of 

positive predictions that were actually correct. 

  

 
Eg: In the cancer model, it determines the proportion of patients who had cancer and were also 

diagnosed as having cancer. 

 

4. Recall or Sensitivity: 

 

Though similar to Precision, it is used to determine the proportion of positive predictions that 

were incorrect. 

 

 
  

Thus, maximizing Precision minimizes FP errors and maximizing Recall minimizes FN errors. 

 

5. F – Scores: 

 

F – Scores are used in cases where we need both Precision and Recall. Since simply taking the 

arithmetic mean of the two metrics will give a highly biased answer in some situations, we 

calculate their harmonic mean instead which is more balanced. 

 



 

 

 

 

 

 

 

 

 

 

Support Vector Machines 
 

 

 

What is a Support Vector Machine? 

 

The objective of SVM algorithm is to find a hyperplane in an N- dimensional space, N is the number of 

features, to classify the data. 

 

The idea behind SVM is: 

 

1. We start with data in a relatively low dimension, let's start with data in 1-Dimension. 

 

2. We move the data into a higher dimension, say 2-Dimensional. 

 

3. Now we find a Support Vector Classifier that separates the data into two groups. 

 

We select the hyperplane with the highest margin in order to classify new data points with the greatest 

accuracy. There are many possible hyperplanes, but we select the one with the highest margin.  



 

 
What is a support vector? 

 

Orientation and position of the hyperplane are influenced by support vectors. The margin of the classifier 

is maximized with these support vectors. The position of the hyperplane will change if support vectors are 

removed, the SVM‟s are built around these points. 

 

But now the next question arises as to how we transform the data? 

 

SVM‟s use something called the kernel functions to systematically find support vector classifiers in 

higher dimensions. 

 

 

Kernel Functions: 

 
The term "Kernel" refers to the mathematical functions used in Support Vector Machines for 

manipulating data. As a result, Kernel Functions generally transform the training data so that non-linear 

decision surfaces can be transformed into linear equations in more dimensions.  

 

 

Radial Kernel/Radial Basis Function Kernel: 

 

Equation for radial basis kernel: 

f (X1, X2) = exp(-gamma * ||X1 - X2||^2) 

The value of gamma is determined by cross validation. 

 



 

Radial kernels are used to find support vector classifiers in infinite dimensions. Our classification of new 

observations is heavily influenced by the closest observations.  

 

Rather than actually transforming the points, kernel functions only calculate their relations as if they were 

already in the higher dimension. 

A kernel trick enables SVM to calculate relationships in infinite dimensions using Radial kernels, 

reducing the computation required for SVM. 

 

 
 

 

 

 

 

 

Naive Bayes 

Introduction: 

Naive Bayes is one of the most efficient and effective inductive supervised learning algorithms 

for machine learning and data mining. It's based on applying Bayes‟ theorem with the “Naive” 

assumption of conditional independence between every pair of features given the value of the 

class variable. Its competitive performance in classification is surprising, because the conditional 

independence assumption on which it is based, is rarely true in real-world applications. 

Example  Consider a “Pima Indians Diabetes” data set.  

The objective of the dataset is to diagnostically predict whether or not a patient has diabetes, 

based on certain diagnostic measurements included in the dataset. Several constraints were 

placed on the selection of these instances from a larger database. In particular, all patients here 

are females at least 21 years old of Pima Indian heritage. 

The first five rows of the data set. 

https://drive.google.com/file/d/1Yb8PlzJfhd59GbOj5_hfmJup7n_YzzQp/view?usp=sharing


 

 

 

Assumption: 

The fundamental Naive assumption is that each feature makes an: 

● independent, and 

● equal 

contribution to the outcome. 

Bayes’ Theorem: 

Bayes‟ Theorem finds the probability of an event occurring given the probability of another 

event that has already occurred. Bayes‟ theorem is stated mathematically as the following 

equation: 

   |   
   |      

    
 

where A and E are events and P(E) ≠ 0. 

● Basically, we are trying to find probability of event A, given that the event E is true. 

Event E is also termed as evidence. 

● P(A) is the priori of A (the prior probability, i.e., Probability of event before evidence is 

seen). The evidence is an attribute value of an unknown instance (here, it is event E). 

● P(A|E) is a posteriori probability of E, i.e., probability of event after evidence is seen. 

Now, with regards to our dataset, we can apply Bayes‟ theorem in following way  

   |   
   |      

    
      

where, Y is class variable and X is an independent feature vector (of size n) where: 



 

Y= y and     
 
       

In our data set feature vector and corresponding class variable are: 

X = (Preg, Plas, Pres, skin, test, mass, pedi, age) 

Y = class 

So basically, P(Y|X) here means, the probability of “having diabetes”, class (0 or 1), given that 

the following constraints 

● Preg: Number of times pregnant 

● Plas: Plasma glucose concentration 2 hours in an oral glucose tolerance test 

● Pres: Diastolic blood pressure (mm Hg) 

● skin: Triceps skin fold thickness (mm) 

● test: 2-Hour serum insulin (mu U/ml) 

● mass: Body mass index (weight in kg/ (height in m)
2
) 

● pedi: Diabetes pedigree function 

● age: Age (years) 

Naive Assumption: 

Now, it‟s time to put a Naive assumption to the Bayes‟ theorem, which is, independence among 

the features. So now, we split evidence into the independent parts.  

Now, if any two events A and B are independent, then 

P(AB) = P(A)P(B) i.e., P(A|B) = P(A) or P(B|A) = P(B) 

Now, equation (1) can also be written as: 

             
                

          
 

Using the Naive conditional independence assumption that 

    |                           |    

for all  , this relationship is simplified to 

             
    ∏         

   

          
 

Since,            is constant given the input, we can use the following classification rule: 

                 ∏       

 

   

             
 

    ∏        

 

   

   

and we can use Maximum A Posteriori (MAP) estimation to estimate      and        ; the 

former is then the relative frequency of class   in the training set. 

The different Naive Bayes classifiers differ mainly by the assumptions they make regarding the 

distribution of        . 



 

Gaussian Naive Bayes: 

In Gaussian Naive Bayes, continuous values associated with each feature are assumed to be 

distributed according to a Gaussian distribution. A Gaussian distribution is also called Normal 

distribution. Plotting the distribution gives a bell-shaped curve which is symmetric about the 

mean of the feature values. 

 

The likelihood of the features is assumed to be Gaussian; hence, conditional probability is given 

by: 

        
 

√    
 
      

       
 

   
 

  

The parameters    and  
 

 are estimated using maximum likelihood. 

Implementation of Gaussian Naive Bayes: 

Now, let‟s predict whether or not a patient has diabetes using Gaussian Naive Bayes. 

 

● First, let‟s see if there any null value in data set. 

 

● Let‟s check the correlation between features and class variables. 



 

 

● Heatmap 

 

● Calculating diabetes ratio of True/False from outcome variable: 

True outcome is represented as 1 and False outcome as 0. 

True cases% = 
         

                    
 

False cases% = 
          

                    
 

 

So, we have 34.90% people in current data set who have diabetes and rest of 65.10% doesn't 

have diabetes. 

It‟s a good distribution True/False cases of diabetes in data. 

 



 

● Splitting the data 

we will use 70% of data for training and 30% for testing. 

 

● Checking hidden missing values 

As we checked missing values earlier but haven't gotten any. But there can be lots of entries with 

0 values. We must need to take care of those as well. 

 

We can see lots of 0 entries above. 

● Replacing 0s with serial mean 



 

 

● Training Naïve Bayes Algorithm 

 

● Performance of our model with training data 

 

● Performance of our model with testing data 

 

● Confusion matrix and classification report 



 

 

 

We can see our true positive numbers with value 1 is of precision and it was below 70%. 

Drawbacks: 

● Naive Bayes assumes that all predictors (or features) are independent, rarely happening in 

real life. This limits the applicability of this algorithm in real-world use cases. 

● This algorithm faces the „zero-frequency problem‟ where it assigns zero probability to a 

categorical variable whose category in the test data set wasn‟t available in the training 

dataset. It would be best if you used a smoothing technique to overcome this issue. 

● Its estimations can be wrong in some cases, so we shouldn‟t take its probability outputs 

very seriously. 

 

 



 

 

KNN Algorithm 

What is KNN Algorithm? 

● K-Nearest Neighbors is one of the simplest Machine Learning algorithms based on 

Supervised Learning. 

● K-NN algorithm assumes the similarity between the new case/data and available cases 

and put the new case into the category that is most similar to the available categories. 

● K-NN algorithm can be used for Regression as well as for Classification but primarily it 

is used for Classification problems. 

● K-NN is a non-parametric algorithm, which means it does not make any assumption on 

underlying data. 

● It is also called a lazy learner algorithm because it does not learn from the training set 

immediately instead it stores the dataset and at the time of classification, it performs an 

action on the dataset. 

● Example - Given below is the pictorial representation of how the KNN classifier works.  

● Firstly, we will choose the number of neighbors, so we will choose k=5. 

● Next, we will calculate the Euclidean distance between the data points. The Euclidean 

distance is the distance between two points, which we have already studied in geometry. 

It can be calculated as: 



 

●  

● By calculating the Euclidean distance, we got the nearest neighbors, as three nearest 

neighbors in category A and two nearest neighbors in category B.  

 

● As we can see the 3 nearest neighbors are from category A, hence this new data point 

must belong to category A. 



 

 

How does KNN work? 

The K-NN working can be explained on the basis of the below algorithm: 

● Step-1: Select the number K of the neighbors 

● Step-2: Calculate the Euclidean distance of K number of neighbors 

● Step-3: Take the K nearest neighbors as per the calculated Euclidean distance. 

● Step-4: Among these k neighbors, count the number of the data points in each category. 

● Step-5: Assign the new data points to that category for which the number of neighbors is 

maximum. 

● Step-6: Our model is ready. 

Python implementation of the KNN algorithm 

 

Domain: Medical  

Context: Medical research university X is undergoing deep research on patients with certain 

conditions. University has an internal AI team. Due to confidentiality the patient‟s details and 

conditions are masked by the client by providing different datasets to the AI team for developing 

an AIML model which can predict the condition of the patient depending on the received test 

results.  

Data Description: The data consists of biomechanics features of the patients according to their 

current conditions. Each patient is represented in the data set by six biomechanics attributes 

derived from the shape and orientation of the condition to their body part.  



 

Project Objective: To Demonstrate the ability to fetch, process, and leverage data to generate 

useful predictions by training Supervised Learning algorithms.  

 

Steps to implement the K-NN algorithm: 

● Data Pre-processing step 

● Fitting the K-NN algorithm to the Training set 

● Predicting the test result 

● Test accuracy of the result (Creation of Confusion matrix) 

Data Preprocessing and EDA 

1. Importing the necessary libraries 

 
2. Loading all three datasets 

 
 

3. After observing the datasets, modifications are needed in the “Class” feature in each 

dataset to ensure proper labeling of the three classes. 

 



 

 

 

 



 

 

Observation 

There is a significant correlation between P_incidence and S_slope, and some moderate 

correlation between P_incidence and L_angle. 

 

Univariate, Bivariate, and Multivariate Analysis 

 



 

 



 

 

Observation 

● The above plot displays a scatterplot with two histograms at the margins of the graph. If you 

observe the scatterplot, there seems to be a positive relationship between the columns 

'P_incidence' and 'S_Slope', because if the values of one variable increase so do the other. 

● The strength of the relationship appears to be strong. The marginal histograms are both right-

skewed as most values are concentrated around the left side of the distribution while the right side 

of the distribution is longer. 

● Outliers are the data points that lie far away from the rest of the data values, in the graph we can 

see a few outliers in the scatterplot as well as the histograms. 



 

 

 

Removing the outliers 

 



 

KNN BASE MODEL 

 

 

 

 

 

 



 

Classification matrix 

We can clearly tell the difference in precision for different classes. Our KNN Classifier with k = 

7 classifies the Normal class with 80% accuracy and 94% accuracy for Type_S, however 

precision for Type H is very low. Hence, we need to use a better value of k. 

Finding the best Value of K 

 



 

 

Accuracy decreases for an increase in k for training data, however, accuracy is maximum for 13 

< k < 20. Let's try checking the accuracy when k = 13, 15,17,19 

 



 

             

 

Observation: K = 15 produces the best results for our given dataset. 
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